Search courses 👉
Professional Training

Crude Oil, Natural Gas and Refined Products Price Modeling, Forecast and Predictions

Rcademy, Online (+3 locations)
Length
5 days
Price
1,875 - 4,150 GBP excl. VAT
Next course start
16 December, 2024 (+2 start dates)
Course delivery
Classroom, Virtual Classroom
Length
5 days
Price
1,875 - 4,150 GBP excl. VAT
Next course start
16 December, 2024 (+2 start dates)
Course delivery
Classroom, Virtual Classroom
Leave your details so the provider can get in touch

Course description

An essential component of decision-making in the energy sector is oil prices. Stakeholders in the energy industry are constantly confronted with factors and data that could negatively or positively impact oil prices. These data are drawn from analysis of geopolitical events, changes in supply and demand, and the financial markets.

What are the factors that determine the price of oil?

As a crucial aspect of the global economy, various factors play a role in determining oil prices. First, demand and supply are vital factors that impact oil prices. An increased supply of natural gases typically results in reduced oil prices, while a decrease in supply means higher oil prices. Aside from these factors, other factors that impact the prices of oil are:

  • The level of oil in storage
  • Volumes of oil import and export
  • Investing in oil and gas drilling
  • Temporary price fluctuations

Upcoming start dates

Choose between 2 start dates

16 December, 2024

  • Virtual Classroom
  • Online
  • English

23 December, 2024

  • Classroom
  • Nairobi
  • English

Suitability - Who should attend?

Who Should Attend?

The Rcademy Crude Oil, Natural Gas, and Refined Products Price Modelling, Forecast and Predictions Training Course are designed for a wide range of professionals within the oil and gas sectors and individuals who wish to learn about crude oil, natural gas, refined product price modeling, forecasting, and predictions. The following personnel should undertake the course:

  • Financial Managers:tasked with performing financial analyses and managing the finances of an organization or government body
  • Financial Planners:responsible for meeting the short-term and long-term financial needs of clients
  • Maintenance supervisors:tasked with supervising the safe and efficient management of refinery equipment
  • Energy traders:charged with facilitating transactions among buyers and sellers of energy products
  • Risk managers:responsible for managing the risks of a firm, its reputation, assets, employees, and interests of stakeholders
  • Quantitative analysts:tasked with developing and implementing complex models to solve risk management and financial challenges
  • Investment bankers:charged with helping oil firms profit from financial services such as debt and equity financing
  • Policymakers:responsible for researching and evaluating energy data and developing policies that impact the energy sector
  • Chief Accounting Officers:responsible for overseeing the accounting functions of a company and also ensuring the company is tax compliant
  • Energy forecasting analysts:tasked with applying mathematical and statistical modeling to design short and long-term energy forecasts
  • Energy analysts:responsible for evaluating data on energy use, analyzing energy efficiency, and designing energy models for oil and gas companies
  • Professionalsinterested in learning about the principles and practice of price modeling and forecasting in the crude oil and natural gas industry

Outcome / Qualification etc.

The Rcademy Crude Oil, Natural Gas, and Refined Products Price Modelling, Forecast and Predictions Training Course are geared towards assisting participants in attaining the following objectives:

  • Understand how to manage and optimize an organization’s energy risk exposure
  • Understand the principles involved in crude oil and natural gas price modeling and forecasting
  • Recognize estimated returns and how to calculate volatilities in energy prices
  • Identify the basics of Excel mechanics and its functionality in the oil and gas sectors
  • Execute both comparable company and transaction analysis
  • Understand how to implement valuation and financial modeling best practices
  • Learn about option pricing and the factors that affect crude oil and natural gas price modeling
  • Understand how to utilize machine learning in crude oil and natural gas forecasting
  • Understand the impacts of forecasting and prediction analysis on the energy sector

Training Course Content

Module 1: Introduction to Crude Oil and Natural Gas Price Modelling

  • Introduction and definition of terms
  • Forecasting natural gas and crude oil prices
  • Standard formatting best practices
  • The importance of volume and price hedges
  • Excel best practices
  • Designing comprehensive crude oil and natural price models
  • Fixing iteration, circularity, and other common modeling problems
  • Using data to present sensitivities to projected financial metrics
  • Balancing accounts, including excess cash and revolver

Module 2: Forecasting the Prices of Crude Oil, Natural Gas, and Refined Products

  • The market price of risk
  • Using regression analysis
  • Observing forecast prices
  • Applying the jump-diffusion model to oil futures options
  • Difference between forecast prices and future prices
  • Capital Asset Pricing Model (CAPM) and price forecasts
  • Estimating risk premium in finance and its applications to energy prices
  • The market cost of risk

Module 3: Designing an Oil and Gas Trading Model

  • Establishing oil and gas evaluation models
  • OPEC trading model
  • Calculating LTM operating results
  • Normalizing operating results
  • Excluding nonrecurring charges
  • Collating financial projections
  • Inputting financial data and calculating price and market ratios
  • Evaluating outstanding shares using the treasury stock technique
  • Structuring output schedules
  • Generating multiple tables
  • Choosing key valuation multiples through VLOOKUP

Module 4: Option Pricing

  • Black-Scholes formula
  • Valuation of American-style options
  • Payoffs and putt-call parity
  • The Binomial model
  • Option sensitivities/The Greeks
  • Delta and Gamma
  • The strip of spark spread options
  • Real options in the energy market
  • Oil fields as the valuation of extraction option
  • Commodity swaps

Module 5: Data-Driven Natural Gas Price Prediction Models Using Machine Learning Methods

  • Data-based predictive models
  • Machine learning equipment for energy price prediction – ­Gaussian process regression (GPR) – Support vector machines (SVM) – Artificial neural networks (ANN) – Gradient boosting machines (GBM)
  • The cross-validation method
  • Evaluation of natural gas and crude oil spot prices

Module 6: A Primer on the Interest Rate Markets

  • Floating rate securities
  • Time and time value of money
  • Basics of Excel functions of bond costing and valuation
  • Interest rate risk as the key bond risk
  • Bond risks and interest rate volatility
  • Economic limit test
  • Convexity and duration: hedging interest rate exposure
  • Forecasting future interest rates through – ­Practitioners’ approaches – Financial-economics approach

Module 7: Statistics of Price Processes in Energy Markets

  • Historical volatility
  • Historical volatility vs implied volatility
  • Characterizing the volatility surface across strike and time
  • The term structure of volatility (TSOV)
  • Estimating a mean-reverting process

Module 8: The Present State of Commodity and Equity Markets

  • Upstream petroleum fiscal valuation and modeling
  • Measuring nervousness
  • Uncertainty of commodity and equity markets
  • The Paradox of the world crude oil prices
  • Interdependence and complexities of the oil market
  • Refined oil products and retail gasoline prices
  • Natural gas – ­Pricing – Demand determinants – Trade – Reserves and productions – Physical attributes and supply
  • Throughput, refining capacity, and refined oil products

Module 9: Introduction to Forwards, Futures, and Statistical Concepts

  • Regression analysis
  • Amortization and depreciation
  • Basic statistical concepts – Stationarity of time variables – Average and volatility
  • Constrained optimization problems
  • Basics of futures and forwards: definitions, pricing by arbitrage, and payoff diagram
  • Forward/futures prices and forecast prices

Module 10: Crude Oil Prices, Geopolitical and Economic Events

  • Oil prices, inventory, and production
  • Role of Shale Oil
  • Diversification in the Gulf Corporation Council (GCC)
  • API reports
  • Cost breakeven oil prices
  • Geopolitical events and impacts on oil prices
  • Oil market rebalancing
  • Oil Production and the Challenges of green energy
  • Challenges in designing the oil safety stock
  • How countries deal with changes in oil prices

Request info

Contact form

Fill out your details to find out more about Crude Oil, Natural Gas and Refined Products Price Modeling, Forecast and Predictions.

  Contact the provider

  Get more information

  Register your interest

Country *

reCAPTCHA logo This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Rcademy
Floor 9, Zoom Building, Marassi Drive, Business Bay
Dubai

Rcademy

Rcademy is a global training and consultation organisation set out to bridge the gap between you now and what you can be in the near future. We are facilitators of knowledge impartation. Our team of established and experienced training enthusiasts...

Read more and show all courses with this provider

Ads