Search courses 👉
Professional Training

Basics of Statistical Inference and Modelling Using R

edX, Online
Length
6 weeks
Next course start
Start anytime See details
Course delivery
Self-Paced Online
Length
6 weeks
Next course start
Start anytime See details
Course delivery
Self-Paced Online
Visit this course's homepage on the provider's site to learn more or book!

Course description

Basics of Statistical Inference and Modelling Using R

Basics of Statistical Inference and Modelling Using R is part one of the Statistical Analysis in R professional certificate.

This course is directed at people with limited statistical background and no practical experience, who have to do data analysis, as well as those who are “out of practice”. While very practice oriented, it aims to give the students the understanding of why the method works (theory), how to implement it (programming using R) and when to apply it (and where to look if the particular method is not applicable in the specific situation).

Upcoming start dates

1 start date available

Start anytime

  • Self-Paced Online
  • Online
  • English

Suitability - Who should attend?

Prerequisites

The course requires a good understanding of basic algebra, logarithms and exponential functions, the equation of a straight line, basic concepts of probability, continuous and discrete random variables, distributions, probability (density) functions, cumulative probability density functions, expectation and variance and basic sample statistics.

If you have never used R before, it is also recommended to go through the chapters 1-7, and 9 of the R-manual found at https://cran.r-project.org/doc/manuals/r-release/R-intro.html

Outcome / Qualification etc.

What you'll learn

  • Sample and population. Sampling distribution. Parameter estimates and confidence intervals.
  • Central Limit Theorem
  • Hypothesis Testing. P-values. Standard tests: t-test, the test of binomial proportions, Chi-squared test. Statistical and Practical Significance.
  • Exploratory data analysis and data visualisation using R.
  • Analysis of Variance (ANOVA) and post-hoc tests using R.
  • Multivariate analysis using linear regression and analysis of variance with covariates (ANCOVA). Assumptions, diagnostics, interpretation. Model comparison and selection.
  • Numerical Methods: The use of simulations, non-parametric bootstrap and permutation tests using R.
  • Identifying the research question.
  • Experimental design (basics of power analysis) and missing data.

Course delivery details

This course is offered through University of Canterbury, a partner institute of EdX.

5-10 hours per week

Expenses

  • Verified Track -$249
  • Audit Track - Free
Ads